# Inter-annual patterns in atmospheric radiative cooling from TRMM & TERRA: Implications to the vertical water vapor distribution

Anand K. Inamdar
V. Ramanathan
Center for Atmospheric Sciences
SIO UCSD La Jolla

29<sup>th</sup> CERES Science Team Meeting November 17-18, 2003 Radisson Hotel, Hampton

# Key Issues in the study of Water Vapor Feedback

- Role of vertical structure of water vapor variability in the troposphere and the associated sensitivity to climate;
- Uncertainties in UTH mask the actual sensitivity to height-dependent changes;
- Broadband TOA measurements too weak signal;
- Atmospheric column loses long wave radiative energy through emissions both at TOA and surface.

### **Definitions**

$$G_a = es T_s^4 - OLR$$
 $G_a^*$ 
 $RC = G_a - G_a^*$ 

TRMM SSF Edition 2B

TERRA SSF Edition 1A (TRMM ADMs)

**Ancillary Data** 

TOVS Path Finder Path-A (Susskind et al. 1997)

#### SENSITIVITY OF G<sub>a</sub> AND COL RADIATIVE COOLING TO H<sub>2</sub>O PERTURBATION



## Conclusion from the Sensitivity study

Continuum emission in the window (8 – 12 micron) contributes to enhanced cooling of the column, while elevated levels of moisture in the upper troposphere lead to a net decrease in the long wave cooling of the column owing to strong absorption in the rotational bands.



Inter-annual differences in surface temperature, water vapor and atmospheric greenhouse effect between 1998 (TRMM year) and 2001 (TERRA year) reveal some very interesting patterns.









#### PLATFORM: TRMM (1998) & TERRA (2001)

#### SURFACE TEMPERATURE DIFFERENCE (K) MAR 2001 - MAR 1998



PRECIPITABLE WATER DIFF (kg m²) MAR 2001 - MAR 1998



#### PLATFORM: TRMM (1998) & TERRA (2001)

Surface Temp Change (K) Mar 2001-Mar 1998



Precip Water Change (kg m²) Mar 2001-Mar 1998



#### Platform: TRMM(1998) & TERRA(2001)

Ga (NON-WINDOW) Change Mar 2001-mar 1998



G<sub>a</sub> (WINDOW) Change Mar 2001-mar 1998



#### CLEAR-SKY LONGWAVE RADIATIVE COOLING (TRMM & TE

CHANGE IN RC (NON-WINDOW) JFM 2001 - JFM 1998



CHANGE IN RC (WINDOW) JFM 2001 - JFM 1998



### Conclusion

- Entire stretch of the Pacific Ocean north of equator had a moister upper troposphere in 2001 than in 1998, although domain average (30 N – 30 S) SST was cooler.
- Cooler and drier close to the equator during 2001.
- But the moister N. Pacific with increased G<sub>a</sub> (Non-window) overwhelms.

#### TOVS PATHFINDER PATH A (Susskind et al. 1997)

PERCENT CHANGE IN PRECIP WATER BELOW 500 mb: JFM 2001 - JFM 1998



PERCENT CHANGE IN PRECIP WATER ABOVE 500 mb: JFM 2001 - JFM 1998



#### WATER VAPOR PRODUCTS COMPARISON (SSF & TOVS)

PRECIP. WATER CHANGE (kg m2) MAR2001-MAR1998, SSF DATA



PRECIP. WATER CHANGE (kg m2) MAR 2001-MAR 1998, TOVS DATA

